Notizie flash

Il paradosso di Zenone



E' uno dei paradossi più famosi quello di "Achille e la tartaruga".
L'Achille in questione è Achille piè veloce, mentre la tartura è una povera tartaruga che dovrà gareggiare con il nostro eroe.
È stato proposto nel quinto secolo avanti Cristo da Zenone di Elea, che intendeva difendere le tesi del suo maestro Parmenide, che sosteneva che il movimento non è altro che illusione.


Una delle descrizioni più famose del paradosso è quella dello scrittore argentino Jorge Luis Borges:




Achille, simbolo di rapidità, deve raggiungere la tartaruga, simbolo di lentezza. Achille corre dieci volte più svelto della tartaruga e le concede dieci metri di vantaggio. Achille corre quei dieci metri e la tartaruga percorre un metro; Achille percorre quel metro, la tartaruga percorre un decimetro; Achille percorre quel decimetro, la tartaruga percorre un centimetro; Achille percorre quel centimetro, la tartaruga percorre un millimetro; Achille percorre quel millimetro, la tartaruga percorre un decimo di millimetro, e così via all’infinito; di modo che Achille può correre per sempre senza raggiungerla.



Come abbiamo accennato è un paradosso, quindi è impensabile che una tartaruga vinca nel confronto con Achille, però sappiamo anche che, se partendo alle spalle di una persona e, correndo più veloce di lui, riusciremo a raggiungerla, la questione centrale è quindi il tempo.
Analizziamo ora il paradosso attraverso la logica di Zenone, un pò di filosofiaed un pò di matematica ci porteranno alla soluzione. (Achille parte indietro rispetto alla tartaruga questo è il punto di partenza, ricordiamolo).

1) Achille dà un vantaggio alla tartaruga di 100 metri
2) Achille dopo 10 secondi ha percorso quei 100 metri e la tartaruga, essendo un animale lento, ma noi prendiamola come abbastanza veloce (per esemplificare) avrà percorso un metro.
3) Ci troviamo, ora, in questa situazione: la tartaruga è aventi di un metro rispetto ad Achille (situazione simile a quella del punto di partenza)
4)Achille ora ha percorso il metro che lo separava dalla tartaruga, però quest'ultima avrà percorso un centimetro. Dopo un decimo di secondo ci troviamo in questa situazione
5)Siamo di nuovo nella situazione di partenza, quello che è cambiato sono le distanze. Se noi volessimo ripetere ogni volta che vogliamo il passaggio sopra esposto vedremo che la tartaruga avrà una distanza rispetto ad Achille ridotta di un centesimo rispetto alla distanza precedente.


Come volevasi dimostrate Achille non raggiungerà mai la tartaruga, perchè anche se l'uomo si avvicina alla tartaruga, non azzererà mai, in toto, la distanza. Però, osserviamo bene quello che ho appena scritto, c'è una conclusione sbagliata, ma non un errore di logica.  Quindi forniamo una spiegazione anche a questa illogicità.

Se scriviamo il tempo trascorso durante le varie ripetizioni vediamo che aumenterà sempre di più e varrà:

T = 10 secondi + 0,1 secondo + 0,001 secondo + .....


T = 10 + 1/10 + 1/1000 + .... e continuate ad aggiungere due zeri ad ogni passaggio perchè il tempo che ci mette a percorrere distanze sempre più piccole è chiaramente sempre più piccolo

L'errore di Zenone e di tutti i pensatori di quell'epoca e delle epoche fino alla fine del primo millennio dopo Cristo ( Zenone ha vissuto 400 anni prima di Cristo), era pensare che sommando infiniti intervalli di tempo, cioè mettendoli in fila uno dopo l'altro senza smettere mai, si ottenesse un tempo senza fine (infinito).
Se guardate però il primo modo di scrivere il tempo T dopo ogni interazione vedete che aumenta si, ma in maniera particolare:
1° Passo: T = 10 secondi
2° Passo: T = 10,1 secondi
3° Passo: T = 10,101 secondi
4° Passo: T = 10,10101 secondi (etc, etc)

Quello che otteniamo, è un numero perodico,ma che ha un valore ben definito. Come vediamo, pur sommando intervalli di tempo in continuazione, la parte iniziale del numero non cambia mai,
E infatti vediamo che questo tempo T si avvicina sempre più alla frazione: 100 / 9,9 .

Al giorno d'oggi esiste un metodo più pratico per calcolarlo, infatti se Achille percorre 100 metri in 10 secondi, la sua velocità è di 10 metri al secondo. Mentre la tartaruga percorre 1 metro in 10 secondi, cioè 0,1 metri al secondo.
Otteniamo questa formual:
T = (distanza tra Achille e la Tartaruga) / ( Velocità di achille - Velocità Tartaruga )

Che fa proprio: T = 100 / ( 10 - 0,1 ) = 100 / 9,9.

Ringrazio chi me l'ha spiegato a suo tempo, chi me l'ha riproposto oggi su msn, e vi rimando a wikipedia per maggiori informazioni sulla spiegazione del paradosso.

 

Joomla templates by a4joomla